3.6.12 \(\int \frac {\sec ^2(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx\) [512]

3.6.12.1 Optimal result
3.6.12.2 Mathematica [A] (verified)
3.6.12.3 Rubi [A] (verified)
3.6.12.4 Maple [B] (warning: unable to verify)
3.6.12.5 Fricas [A] (verification not implemented)
3.6.12.6 Sympy [F]
3.6.12.7 Maxima [F]
3.6.12.8 Giac [A] (verification not implemented)
3.6.12.9 Mupad [F(-1)]

3.6.12.1 Optimal result

Integrand size = 43, antiderivative size = 164 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\sqrt {2} (A-B+C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 (15 A-10 B+14 C) \tan (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 C \sec ^2(c+d x) \tan (c+d x)}{5 d \sqrt {a+a \sec (c+d x)}}+\frac {2 (5 B-C) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{15 a d} \]

output
-(A-B+C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^( 
1/2)/d/a^(1/2)+2/15*(15*A-10*B+14*C)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2 
/5*C*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/15*(5*B-C)*(a+a*se 
c(d*x+c))^(1/2)*tan(d*x+c)/a/d
 
3.6.12.2 Mathematica [A] (verified)

Time = 1.89 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.77 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left (-15 \sqrt {2} (A-B+C) \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right )+2 \sqrt {1-\sec (c+d x)} \left (15 A-5 B+13 C+(5 B-C) \sec (c+d x)+3 C \sec ^2(c+d x)\right )\right ) \tan (c+d x)}{15 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a 
+ a*Sec[c + d*x]],x]
 
output
((-15*Sqrt[2]*(A - B + C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]] + 2*Sqrt 
[1 - Sec[c + d*x]]*(15*A - 5*B + 13*C + (5*B - C)*Sec[c + d*x] + 3*C*Sec[c 
 + d*x]^2))*Tan[c + d*x])/(15*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + 
 d*x])])
 
3.6.12.3 Rubi [A] (verified)

Time = 0.97 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.09, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.256, Rules used = {3042, 4576, 27, 3042, 4498, 27, 3042, 4489, 3042, 4282, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4576

\(\displaystyle \frac {2 \int \frac {\sec ^2(c+d x) (a (5 A+4 C)+a (5 B-C) \sec (c+d x))}{2 \sqrt {\sec (c+d x) a+a}}dx}{5 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sec ^2(c+d x) (a (5 A+4 C)+a (5 B-C) \sec (c+d x))}{\sqrt {\sec (c+d x) a+a}}dx}{5 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a (5 A+4 C)+a (5 B-C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{5 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4498

\(\displaystyle \frac {\frac {2 \int \frac {\sec (c+d x) \left ((5 B-C) a^2+(15 A-10 B+14 C) \sec (c+d x) a^2\right )}{2 \sqrt {\sec (c+d x) a+a}}dx}{3 a}+\frac {2 (5 B-C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {\sec (c+d x) \left ((5 B-C) a^2+(15 A-10 B+14 C) \sec (c+d x) a^2\right )}{\sqrt {\sec (c+d x) a+a}}dx}{3 a}+\frac {2 (5 B-C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left ((5 B-C) a^2+(15 A-10 B+14 C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}+\frac {2 (5 B-C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4489

\(\displaystyle \frac {\frac {\frac {2 a^2 (15 A-10 B+14 C) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-15 a^2 (A-B+C) \int \frac {\sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx}{3 a}+\frac {2 (5 B-C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {2 a^2 (15 A-10 B+14 C) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-15 a^2 (A-B+C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}+\frac {2 (5 B-C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4282

\(\displaystyle \frac {\frac {\frac {30 a^2 (A-B+C) \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+2 a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 a^2 (15 A-10 B+14 C) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{3 a}+\frac {2 (5 B-C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\frac {2 a^2 (15 A-10 B+14 C) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {15 \sqrt {2} a^{3/2} (A-B+C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{3 a}+\frac {2 (5 B-C) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}+\frac {2 C \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}\)

input
Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + a*Se 
c[c + d*x]],x]
 
output
(2*C*Sec[c + d*x]^2*Tan[c + d*x])/(5*d*Sqrt[a + a*Sec[c + d*x]]) + ((2*(5* 
B - C)*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d) + ((-15*Sqrt[2]*a^(3/2 
)*(A - B + C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d* 
x]])])/d + (2*a^2*(15*A - 10*B + 14*C)*Tan[c + d*x])/(d*Sqrt[a + a*Sec[c + 
 d*x]]))/(3*a))/(5*a)
 

3.6.12.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4282
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2/f   Subst[Int[1/(2*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[ 
a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4489
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*B*m + A*b*(m + 1))/(b*(m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B 
, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b 
*(m + 1), 0] &&  !LtQ[m, -2^(-1)]
 

rule 4498
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]* 
((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   Int 
[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B) 
*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a 
*B, 0] &&  !LtQ[m, -1]
 

rule 4576
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Cs 
c[e + f*x])^n/(f*(m + n + 1))), x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Cs 
c[e + f*x])^m*(d*Csc[e + f*x])^n*Simp[A*b*(m + n + 1) + b*C*n + (a*C*m + b* 
B*(m + n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m 
, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] &&  !LtQ[n, -2^(-1)] && 
NeQ[m + n + 1, 0]
 
3.6.12.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(445\) vs. \(2(143)=286\).

Time = 1.07 (sec) , antiderivative size = 446, normalized size of antiderivative = 2.72

method result size
default \(-\frac {\sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (15 A \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{\frac {5}{2}} \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )-15 B \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{\frac {5}{2}}+15 C \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{\frac {5}{2}} \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )-30 A \left (1-\cos \left (d x +c \right )\right )^{5} \csc \left (d x +c \right )^{5}+20 B \left (1-\cos \left (d x +c \right )\right )^{5} \csc \left (d x +c \right )^{5}-34 C \left (1-\cos \left (d x +c \right )\right )^{5} \csc \left (d x +c \right )^{5}+60 A \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-20 B \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+40 C \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-30 A \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-30 C \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{15 d a \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{2}}\) \(446\)
parts \(-\frac {A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\ln \left (\sqrt {\cot \left (d x +c \right )^{2}-2 \cot \left (d x +c \right ) \csc \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )\right )}{d a}+\frac {B \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (3 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{\frac {3}{2}}-4 \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}\right )}{3 d a \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )}-\frac {C \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (15 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{\frac {5}{2}}-34 \left (1-\cos \left (d x +c \right )\right )^{5} \csc \left (d x +c \right )^{5}+40 \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+30 \cot \left (d x +c \right )-30 \csc \left (d x +c \right )\right )}{15 d a \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{2}}\) \(462\)

input
int(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, 
method=_RETURNVERBOSE)
 
output
-1/15/d/a*(-2*a/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(15*A*((1-cos(d*x 
+c))^2*csc(d*x+c)^2-1)^(5/2)*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*cs 
c(d*x+c)^2-1)^(1/2))-15*B*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*csc(d 
*x+c)^2-1)^(1/2))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(5/2)+15*C*((1-cos(d*x 
+c))^2*csc(d*x+c)^2-1)^(5/2)*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*cs 
c(d*x+c)^2-1)^(1/2))-30*A*(1-cos(d*x+c))^5*csc(d*x+c)^5+20*B*(1-cos(d*x+c) 
)^5*csc(d*x+c)^5-34*C*(1-cos(d*x+c))^5*csc(d*x+c)^5+60*A*(1-cos(d*x+c))^3* 
csc(d*x+c)^3-20*B*(1-cos(d*x+c))^3*csc(d*x+c)^3+40*C*(1-cos(d*x+c))^3*csc( 
d*x+c)^3-30*A*(-cot(d*x+c)+csc(d*x+c))-30*C*(-cot(d*x+c)+csc(d*x+c)))/((1- 
cos(d*x+c))^2*csc(d*x+c)^2-1)^2
 
3.6.12.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 405, normalized size of antiderivative = 2.47 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {15 \, \sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right )^{3} + {\left (A - B + C\right )} a \cos \left (d x + c\right )^{2}\right )} \sqrt {-\frac {1}{a}} \log \left (\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left ({\left (15 \, A - 5 \, B + 13 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (5 \, B - C\right )} \cos \left (d x + c\right ) + 3 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{30 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}}, \frac {2 \, {\left ({\left (15 \, A - 5 \, B + 13 \, C\right )} \cos \left (d x + c\right )^{2} + {\left (5 \, B - C\right )} \cos \left (d x + c\right ) + 3 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) + \frac {15 \, \sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right )^{3} + {\left (A - B + C\right )} a \cos \left (d x + c\right )^{2}\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{15 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}}\right ] \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1 
/2),x, algorithm="fricas")
 
output
[1/30*(15*sqrt(2)*((A - B + C)*a*cos(d*x + c)^3 + (A - B + C)*a*cos(d*x + 
c)^2)*sqrt(-1/a)*log((2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sq 
rt(-1/a)*cos(d*x + c)*sin(d*x + c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1 
)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*((15*A - 5*B + 13*C)*cos(d*x 
+ c)^2 + (5*B - C)*cos(d*x + c) + 3*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + 
 c))*sin(d*x + c))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2), 1/15*(2*((15 
*A - 5*B + 13*C)*cos(d*x + c)^2 + (5*B - C)*cos(d*x + c) + 3*C)*sqrt((a*co 
s(d*x + c) + a)/cos(d*x + c))*sin(d*x + c) + 15*sqrt(2)*((A - B + C)*a*cos 
(d*x + c)^3 + (A - B + C)*a*cos(d*x + c)^2)*arctan(sqrt(2)*sqrt((a*cos(d*x 
 + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(a* 
d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2)]
 
3.6.12.6 Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \]

input
integrate(sec(d*x+c)**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))* 
*(1/2),x)
 
output
Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)**2/sqrt(a*( 
sec(c + d*x) + 1)), x)
 
3.6.12.7 Maxima [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1 
/2),x, algorithm="maxima")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^2/sqrt(a*se 
c(d*x + c) + a), x)
 
3.6.12.8 Giac [A] (verification not implemented)

Time = 1.40 (sec) , antiderivative size = 281, normalized size of antiderivative = 1.71 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\frac {15 \, {\left (\sqrt {2} A - \sqrt {2} B + \sqrt {2} C\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {2 \, {\left (15 \, \sqrt {2} A a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 15 \, \sqrt {2} C a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - {\left (30 \, \sqrt {2} A a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 10 \, \sqrt {2} B a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 20 \, \sqrt {2} C a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - {\left (15 \, \sqrt {2} A a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 10 \, \sqrt {2} B a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 17 \, \sqrt {2} C a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}}{15 \, d} \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1 
/2),x, algorithm="giac")
 
output
1/15*(15*(sqrt(2)*A - sqrt(2)*B + sqrt(2)*C)*log(abs(-sqrt(-a)*tan(1/2*d*x 
 + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*sgn(cos(d*x + 
c))) + 2*(15*sqrt(2)*A*a^2*sgn(cos(d*x + c)) + 15*sqrt(2)*C*a^2*sgn(cos(d* 
x + c)) - (30*sqrt(2)*A*a^2*sgn(cos(d*x + c)) - 10*sqrt(2)*B*a^2*sgn(cos(d 
*x + c)) + 20*sqrt(2)*C*a^2*sgn(cos(d*x + c)) - (15*sqrt(2)*A*a^2*sgn(cos( 
d*x + c)) - 10*sqrt(2)*B*a^2*sgn(cos(d*x + c)) + 17*sqrt(2)*C*a^2*sgn(cos( 
d*x + c)))*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1 
/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a 
)))/d
 
3.6.12.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^2\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + a/cos(c + 
 d*x))^(1/2)),x)
 
output
int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + a/cos(c + 
 d*x))^(1/2)), x)